
Unit 1: Java

Java - Introduction

 Java is:
– platform independent programming

language
– similar to C++ in syntax
– similar to Smalltalk in mental paradigm

 Pros: also ubiquitous to net
 Cons: interpreted, and still under

development (moving target)

Java - Application

 Java has some interesting features:
– automatic type checking,
– automatic garbage collection,
– simplifies pointers; no directly accessible

pointer to memory,
– simplified network access,
– multi-threading!

Compile-time EnvironmentCompile-time Environment

Java
Bytecodes

move locally
or through

network

Java
Source
(.java)

Java
Compiler

Java
Bytecode
(.class)

Java
Interpreter

Just in
Time

Compiler

Runtime System

Class
Loader

Bytecode
Verifier

Java
Class

Libraries

Operating System

Hardware

Java
Virtual
machine

How it works…!

How it works…!

 Java is independent only for one reason:
– Only depends on the Java Virtual Machine

(JVM),
– code is compiled to bytecode, which is

interpreted by the resident JVM,
– JIT (just in time) compilers attempt to

increase speed.

Java - Security

 Pointer denial - reduces chances of
virulent programs corrupting host,

 Applets even more restricted -
– May not

• run local executables,
• Read or write to local file system,
• Communicate with any server other than the

originating server.

Object-Oriented

 Java supports OOD
– Polymorphism
– Inheritance
– Encapsulation

 Java programs contain nothing but
definitions and instantiations of classes
– Everything is encapsulated in a class!

Java Advantages

 Portable - Write Once, Run Anywhere
 Security has been well thought through
 Robust memory management
 Designed for network programming
 Multi-threaded (multiple simultaneous tasks)
 Dynamic & extensible (loads of libraries)

– Classes stored in separate files
– Loaded only when needed

Basic Java Syntax

Primitive Types and Variables

 boolean, char, byte, short, int, long, float, double etc.
 These basic (or primitive) types are the only types

that are not objects (due to performance issues).
 This means that you don’t use the new operator to

create a primitive variable.
 Declaring primitive variables:

float initVal;
int retVal, index = 2;
double gamma = 1.2, brightness
boolean valueOk = false;

Initialisation

 If no value is assigned prior to use, then the
compiler will give an error

 Java sets primitive variables to zero or false
in the case of a boolean variable

 All object references are initially set to null
 An array of anything is an object

– Set to null on declaration
– Elements to zero false or null on creation

Declarations

int index = 1.2; // compiler error
boolean retOk = 1; // compiler error
double fiveFourths = 5 / 4; // no error!
float ratio = 5.8f; // correct
double fiveFourths = 5.0 / 4.0; // correct

 1.2f is a float value accurate to 7 decimal places.
 1.2 is a double value accurate to 15 decimal places.

